rivative, 4113-97-7; 12 l-methyl acetate derivative, 5236-60-2; 13, 135790-03-3; 14, 135790-04-4; 15, $135790-05-5 ; 15$ mesylate derivative, 135790-12-4; 16, 135790-06-6; 17, 135790-07-7; 18, 135790-08-8; 19 135790-09-9; 20, 135822-29-6; 21, 135790-10-2; 22, 135790-11-3; DDQ, 84-58-2; allyl iodide, 556-56-9.

Supplementary Material Available: Spectroscopic data for 16, 19, and 22 and X-ray structural parameters for 16 (11 pages). Ordering information is given on any current masthead page.

2D Nuclear Magnetic Resonance Analysis of Osmylated C 60

Joel M. Hawkins,* Stefan Loren, Axel Meyer, and Rudi Nunlist

Department of Chemistry University of California, Berkeley Berkeley, California 94720 Received June 27, 1991

 - Revised Manuscript Received August 2, 1991Buckminsterfullerene (C_{60}) presents a novel array of pyramidalized tricoordinate carbons with a spherical closed-shell topology. Derivatives of C_{60} where added atoms make specific carbons tetracoordinate generate new topologies. For example, our 1:1 and $2: 1$ adducts of OsO_{4} with C_{60} correspond to cup- and band-shaped arrays of unsaturated carbons. ${ }^{1}$ With our crystal structure of the $1: 1$ adduct $\mathrm{C}_{60}\left(\mathrm{OsO}_{4}\right)\left(4\right.$-tert-butylpyridine) ${ }_{2}$ (1) we proved the soccer ball shaped carbon framework of C_{60} and provided structural information for the cup-shaped π-system. ${ }^{1}$ Here we report a 2D NMR analysis of 1 whereby we establish regioselective osmylation of C_{60}, assign chemical shifts for the carbons in 1, determine $\mathrm{C}-\mathrm{C}$ coupling constants corresponding to the two types of $\mathrm{C}-\mathrm{C}$ bonds in C_{60}, and provide the first correlation of quaternary-quaternary carbon bond lengths to ${ }^{1} J_{\mathrm{CC}}$.
Carbon-13-enriched C_{60} was prepared from cored natural abundance carbon rods packed with ${ }^{13} \mathrm{C}$ powder ${ }^{2}$ and converted to $1 .{ }^{1}$ The $1 \mathrm{D}{ }^{13} \mathrm{C}$ NMR spectrum of enriched 1 showed 22 peaks. Five of the peaks were assigned to coordinated 4 -tert-butylpyridine. ${ }^{3}$ Of the 17 remaining peaks, four displayed approximately half the intensity of the other 13 peaks. This pattern agrees with the structure of 1 , considering that it has two approximate mirror planes, one containing carbons $1,2,59$, and 60 , and one containing carbons 26, 36, 31, and 41 (Figure 1a). Accordingly, the C_{60} segment of 1 has 17 types of carbons, 13 represented four times, and four that lie on a mirror plane and are represented two times (Figure 1b).
The resolution of multiple cluster carbons indicates that the $\mathrm{C}-\mathrm{O}$ bonding is not fluxional on the NMR time scale. Signals corresponding to the other possible $1: 1$ adduct where OsO_{4} has added across the junction of a five- and a six-membered ring were not detectable. The isomer observed in the crystal thus represents the whole, and the observed regioselectivity agrees with theory. ${ }^{1}$
The 17 types of carbons were assigned on the basis of the connectivities derived from a 2D NMR INADEQUATE experiment (Figure 2, Table I). ${ }^{2,4,5}$ The half-intensity peaks (a, g, n,

[^0]
(a)
(b)

Figure 1. $\mathrm{C}_{60} \mathrm{O}_{2}$ unit of crystal structure of $\mathrm{C}_{60}\left(\mathrm{OsO}_{4}\right)$ (4-tert-butylpyridine) $)_{2}$ (1) showing cluster carbon numbering scheme (a), and fragment showing the connectivities of the 17 types of carbons in the cluster (b). Narrow lines indicate six-five ring fusions, bold lines indicate six-six ring fusions, and dashed lines indicate bonds between symmetry-related carbons or nonindependent couplings.

Figure 2. Upper spectrum: 1D ${ }^{13} \mathrm{C}$ NMR spectrum of 1. Cluster carbons are labeled a-q as assigned in Table I; L indicates 4-tert-butylpyridine. Lower spectrum: 2D NMR INADEQUATE spectrum of 1.4.S Vertical and horizontal lines delineate couplings: $a-q, b-h, b-q$, $\mathrm{c}-\mathrm{d}, \mathrm{c}-\mathrm{k}, \mathrm{c}-\mathrm{l}, \mathrm{e}-\mathrm{i}, \mathrm{k}-\mathrm{q}$, and $\mathrm{m}-\mathrm{p}$. Other couplings are not marked for clarity.
and p) were assigned to the carbons on the approximate mirror planes (types $1,8,13$, and 17). Peaks a and p were assigned to types 1 and 17 because they each couple with only one carbon. Of the pair, the remote upfield peak, a, was assigned to the tetraccordinate O -bonded carbon, type 1.6.7 Starting from carbon

[^1]Table I. Chemical Shifts, Peak Assignments, and Carbon-Carbon Coupling Constants for the C_{60} Portion of 1

peak	chemical shift (ppm)	carbon type	cluster carbons	carbon type, ${ }^{1} J_{\mathrm{CC}}(\mathrm{~Hz})$
a	105.38	1	1, 2	3,48
b	137.02	4	9, 10, 13, 14	3, 71; 7, 56
c	139.42	5	15, 16, 19, 20	2, 68; 6, 56; 9, 56
d	141.81	9	23, 24, 28, 29	5,$56 ; 10$, not first order
e	142.32	10	33, 34, 38, 39	9, not first order; $11,56^{a}$
f	142.48	14	43, 44, 47, 48	15, 56^{a}
g	142.55	13	36, 41	8, 67: 12, 56
h	142.75	7	17, 18, 21, 22	4, 56; 6, 67; 8, 55
i	144.85	11	35, 37, 40, 42	6, 54; 10,$56 ; 12,68$
J	145.04	16	53, 54, 57, 58	12, 56; 15,65
k	145.76	$2^{\text {b }}$	7, 8, 11, 12	3, 57; 5, 68
1	145.77	6^{6}	25, 27, 30, 32	5, 56; 7, 67; 11, 54
m	145.99	15	51, 52, 55, 56	14, 56; 16, 65; 17, 56
n	146.10	8	26,31	7, 55; 13, 67
0	146.32	12	45, 46, 49, 50	11, 68; 13,$56 ; 16,56$
p	148.41	17	59, 60	15, 56
q	153.03	3	3, 4, 5, 6	1, 48; 2, 57; 4, 71

${ }^{a}$ No coupling was observed between peaks e and f, presumably due to small δ / J. ${ }^{b}$ Peaks k and I are extremely close and may have the reversed assignment.
type 1, C-C connectivities provided assignments for carbon types 2-13 and 16. Types 5 and 7 were readily differentiated in that type 5 (peak c) couples with three full-intensity peaks (d, k, and 1), while type 7 (peak h) couples with two full-intensity peaks (b and 1) and a half-intensity peak (n). The coupling between carbon types 9 and 10 (peaks dand e) was not first order, and ${ }^{1} J_{\mathrm{CC}}$ could not be measured. Peaks e and f , corresponding to types 10 and 14, are very close, and the associated cross peaks are not visible. ${ }^{8}$ Connectivities from carbon type 17 completed the assignments. The up-down pattern aided assignments in complicated regions.
Buckminsterfullerene contains one type of carbon and two types of carbon-carbon bonds. The ${ }^{13} \mathrm{C}$ NMR spectrum of C_{60} thus shows a single peak, ${ }^{6}$ and $\mathrm{C}-\mathrm{C}$ couplings corresponding to the two types of $\mathrm{C}-\mathrm{C}$ bonds are not discernible. In contrast, derivative 1 shows 17 peaks and the associated couplings (Table I). The $\mathrm{C}-\mathrm{C}$ coupling constants for the C_{60} portion of 1 fall into three groups, $48 \mathrm{~Hz}, 54-57 \mathrm{~Hz}$, and $65-71 \mathrm{~Hz}$. A plot of bond length versus ${ }^{1} J_{\mathrm{CC}}$ shows three distinct types of bonds (Figure 3).9 The $48-\mathrm{Hz}$ coupling corresponds to the bond between carbon types 1 and 3 and is comparable with the $47.7-\mathrm{Hz} \mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ coupling in benzyl alcohol. ${ }^{10}$ The $54-57-\mathrm{Hz}$ couplings correspond to fusions between five- and six-membered rings, and the $65-71-\mathrm{Hz}$ couplings correspond to fusions between two six-membered rings (Figure 1b). ${ }^{11}$ Considering carbon types 2 and $4-17$, which have approximately equivalent geometries and symmetrical bonds, ${ }^{1}$ the average coupling constants for these two ranges, 55.6 (2) and 67.2 (6) Hz , can be used to calculate the s character in the two types of bonds: 31.5% s for six-five ring fusions, and 34.0% s for six-six ring fusions. ${ }^{12}$ The π-orbital accordingly has 3% s character. ${ }^{13}$
(7) The O-bonded carbons in bisosmylated anthracene appear at 92.2 and 89.6 ppm. Wallis, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1988, $110,8207$.
(8) Intensity decreases with decreasing δ / J. Bax, A. Two-Dimensional Nuclear Magnetic Resonance in Liquids; Delft University Press: Boston, 1982; p 164.
(9) A linear relationship between ${ }^{1} J_{\mathrm{CC}}$ and $\mathrm{C}-\mathrm{C}$ bond lengths has been observed for benzo[a]pyrenes. Unkefer, C. J.; London, R. E.; Whaley, T, W.; Daub, G. H. J. Am. Chem. Soc. 1983, 105, 733.
(10) Ihrig, A. M.; Marshall, J. L. J. Am. Chem. Soc. 1972, 94, 1756.
(11) $\ln C_{70},{ }_{J_{b, c}}={ }^{1} J_{\mathrm{c}, \mathrm{d}}=55 \mathrm{~Hz}$ (six-five ring fusions), ${ }^{1} J_{\mathrm{d}, \mathrm{e}}=62 \mathrm{~Hz}$ (six-six ring fusion), and $J_{1,0}=68 \mathrm{~Hz}$ (six-six ring fusion). Johnson has related the size of ${ }^{1} J_{a, b}$ and ${ }^{1} J_{d, g}$ to whether one or both of the bonded carbons belong to five-membered rings. ${ }^{2}$ In C_{60} and in the $\mathrm{C} 7-\mathrm{C} 60$ portion of 1 , each of the carbons belongs to a five-membered ring, so six-six ring fusions in 1 and C_{60} are similar to bond a-b in C_{70}.
(12) ${ }^{1} J_{c_{x}} c_{y}=\left[0.073\left(\% \mathrm{~s}_{x}\right)\left(\% \mathrm{~s}_{y}\right)-17\right] \mathrm{Hz}, \% s_{x}=\% \mathrm{~s}_{y}$ for symmetrical bonds. Weigert, F. J.; Roberts, J. D. J. Am. Chem. Soc. 1972, 94, 6021. Wehrli, F. W.; Wirthlin, T. Interpretation of Carbon-13 NMR Spectra; Heyden: Philadelphia, 1978; p 57.

Figure 3. Plot of $\mathrm{C}-\mathrm{C}$ bond length versus $\mathrm{C}-\mathrm{C}$ coupling constant in 1 showing three groupings: $C($ type 1$)-C($ type 3$)(\pm)$, six-five ring fusions (-), and six-six ring fusions (■).

Since the structure of this portion of 1 closely fits the soccer ball structure of buckminsterfullerene, ${ }^{1}$ these hybridizations provide a good model for C_{60}.

Acknowledgment. J.M.H. is grateful to the National Science Foundation (Presidential Young Investigator Award, CHE8857453), the Camille and Henry Dreyfus Foundation (New Faculty Grant), the Merck Sharp \& Dohme Research Laboratories (postdoctoral fellowship for A.M.), the Shell Oil Company Foundation (Shell Faculty Fellowship), Xerox Corporation, Monsanto Company, and Hoffmann-La Roche for financial support. S.L. thanks Syntex for a fellowship. We thank James R. Heath for the preparation of ${ }^{13} \mathrm{C}$-enriched soot and Joseph Lyssikatos for assistance with 1D spectra.

[^2]
Tianhu Li and Steven E. Rokita*

Department of Chemistry, State University of New York Stony Brook, New York 11794-3400

Received February 20, 1991
Oligonucleotide-directed alkylating agents ${ }^{1}$ provide an exciting new method for site-specific derivatization of nucleic acids in vitro and in vivo. ${ }^{2}$ The ultimate utility of this type of affinity technique is determined in part by the functional groups chosen for modifying the desired target. Selective modification by a compound of innate reactivity requires a slow rate of conversion in order to permit binding recognition to precede target derivatization. Consequently,
(1) (a) Webb, T. R.; Matteucci, M. D. J. Am. Chem. Soc. 1986, 108, 2764-2765. (b) Vlassov, V. V.; Zarytova, V. F.; Kutiavin, I. V.; Mamaev, S. V.; Podyminogin, M. A. Nucleic Acids Res. 1986, 14, 4065-4076. (c) Vlassov, V. V.; Zarytova, V. F.; Kutyavin, I. V.; Mamaev, S. V. FEBS Lett. 1988, 231, 352-354. (d) Meyer, R. B.; Tabone, J. C.; Hurst, G. D.; Smith, T. M.; Gamper, H. J. Am. Chem. Soc. 1989, Mll, 8517-8519. (e) Povsic, T. J.; Dervan, P. B. J. Am. Chem. Soc. 1990, 112, 9428-9430.
(2) For recent reviews, see: (a) Cohen, J. S., Ed. Oligodeoxynucleotides; CRC Press: Boca Raton, 1989. (b) Brakel, C. L., Ed. Discoveries in Antisense Nucleic Acids; Portfolio Publishing Company: The Woodlands, 1989. (c) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 543-584. (d) Goodchild, J. Bioconjugate Chem. 1990, l, 165-187.

[^0]: (1) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J. Science 1991, 252, 312.
 (2) Johnson, R. D.; Meijer, G.; Salem, J. R.; Bethune, D. S. J. Am. Chem. Soc. 1991, ll3, 3619.
 (3) Coordinated 4 -tert-butylpyridine carbons: $\delta 165.95,149.51,122.85$, 35.16, 30.52 ppm .
 (4) A $2 \mathrm{D}{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ chemical shift correlation spectrum of 40 mg of 1 ($\mathrm{Cl}-\mathrm{C} 605.0 \%{ }^{13} \mathrm{C}$) in 3.3 mL of CDCl_{3} at $26^{\circ} \mathrm{C}$ was acquired at 125.276 MHz on a Bruker AM-500 instrument using a $10-\mathrm{mm}$ probe. The INADEQUATE experiment ${ }^{\text {s/ }}$ was used with a modified phase cycling using 45° phase shifts. ${ }^{56}$ Proton decoupling simplified 4 -tert-butylpyridine signals. The spectral width was set to 8196 Hz in F_{2} and 16392 Hz in $F_{1} ; 8 \mathrm{~K}$ points were sampled in $F_{2} ; 400$ increments of 96 scans were acquired in F_{1}. The refocusing delay was set to 5 ms . The repetition time was set to 5.5 s (T_{1} for C(type 2)-C(type 17) $<4 \mathrm{~s}$). The resulting matrix was processed with zero-filling in F_{1} for a final size of $4 \mathrm{~K} \times 2 \mathrm{~K}$ points. The F_{1} dimension was processed with a real transform; a magnitude calculation was not applied. Coupling constants were measured from individual rows.

[^1]: (5) (a) Mareci, T. H.; Freeman, R. J. Magn. Reson. 1983, 51, 531. (b) Bruker INAD2D3.AU pulse program.
 (6) Peaks b-p fall within the range observed for $\mathrm{C}_{70}, 130.28-150.07 \mathrm{ppm}$, and average 143.8 ppm , close to the resonance of C_{60} at 142.68 ppm . Taylor, R.; Hare, J. P.; Abdul-Sada, K. A.; Kroto, H. W. J. Chem. Soc., Chem. Commun. 1990, 1423. Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112, 8983.

[^2]: (13) POAVI analysis of bond-equalized icosahedral C_{60} gives $s^{0.093} \mathrm{p}$ hybridization for the π-orbital (8% s character). Haddon, R. C.; Brus, L. E.; Raghavachari, K. Chem. Phys. Lett. 1986, 131, 165.

 ## Selective Modification of DNA Controlled by an Ionic Signal

